3k^2+5k-24=0

Simple and best practice solution for 3k^2+5k-24=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3k^2+5k-24=0 equation:


Simplifying
3k2 + 5k + -24 = 0

Reorder the terms:
-24 + 5k + 3k2 = 0

Solving
-24 + 5k + 3k2 = 0

Solving for variable 'k'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-8 + 1.666666667k + k2 = 0

Move the constant term to the right:

Add '8' to each side of the equation.
-8 + 1.666666667k + 8 + k2 = 0 + 8

Reorder the terms:
-8 + 8 + 1.666666667k + k2 = 0 + 8

Combine like terms: -8 + 8 = 0
0 + 1.666666667k + k2 = 0 + 8
1.666666667k + k2 = 0 + 8

Combine like terms: 0 + 8 = 8
1.666666667k + k2 = 8

The k term is 1.666666667k.  Take half its coefficient (0.8333333335).
Square it (0.6944444447) and add it to both sides.

Add '0.6944444447' to each side of the equation.
1.666666667k + 0.6944444447 + k2 = 8 + 0.6944444447

Reorder the terms:
0.6944444447 + 1.666666667k + k2 = 8 + 0.6944444447

Combine like terms: 8 + 0.6944444447 = 8.6944444447
0.6944444447 + 1.666666667k + k2 = 8.6944444447

Factor a perfect square on the left side:
(k + 0.8333333335)(k + 0.8333333335) = 8.6944444447

Calculate the square root of the right side: 2.948634336

Break this problem into two subproblems by setting 
(k + 0.8333333335) equal to 2.948634336 and -2.948634336.

Subproblem 1

k + 0.8333333335 = 2.948634336 Simplifying k + 0.8333333335 = 2.948634336 Reorder the terms: 0.8333333335 + k = 2.948634336 Solving 0.8333333335 + k = 2.948634336 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + k = 2.948634336 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + k = 2.948634336 + -0.8333333335 k = 2.948634336 + -0.8333333335 Combine like terms: 2.948634336 + -0.8333333335 = 2.1153010025 k = 2.1153010025 Simplifying k = 2.1153010025

Subproblem 2

k + 0.8333333335 = -2.948634336 Simplifying k + 0.8333333335 = -2.948634336 Reorder the terms: 0.8333333335 + k = -2.948634336 Solving 0.8333333335 + k = -2.948634336 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + k = -2.948634336 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + k = -2.948634336 + -0.8333333335 k = -2.948634336 + -0.8333333335 Combine like terms: -2.948634336 + -0.8333333335 = -3.7819676695 k = -3.7819676695 Simplifying k = -3.7819676695

Solution

The solution to the problem is based on the solutions from the subproblems. k = {2.1153010025, -3.7819676695}

See similar equations:

| (16/8)^3x-5 | | 3(x+1)-6(x-1)+2(2x-3)-8=0 | | 7x-21=5x-35 | | 2x^2+18x+24=0 | | x/8=15/33x/16 | | x^2-5x+1=7 | | 5(-1x+1)=5 | | 3x(a+2b)=0 | | z+9=9 | | (8x-7)(x+8)=0 | | (3x+7)(x-3)=0 | | 5x+8+9=2x+47 | | 18=6(x-3) | | log[5](x-6)-log[5](x+6)=1 | | 13.1/3-54/10 | | 131/3-54/10 | | 12.3=4.56+f | | 8q=-10+36 | | x+7=11-x | | 2x(x^2+9)-2x=0 | | 3x-4=-26+x | | G+3/4=-1/8 | | 1-7x=6x-142 | | =3a-ax+2x-6 | | 58=5v+3 | | 9+6x=5x+11 | | 8-20=3-4x | | -6=6-2f | | 4/9t=-72 | | 7+5x=x+39 | | 7=4+h/3 | | Z/30=0.06 |

Equations solver categories